A Niched-Penalty Approach for Constraint Handling in Genetic Algorithms

نویسندگان

  • Kalyanmoy Deb
  • Samir Agrawal
چکیده

Kalyanmoy Deb and Samir Agrawal Kanpur Genetic Algorithms Laboratory (KanGAL), Department of Mechanical Engineering, Indian Institute of Technology Kanpur, PIN 208 016, India E-mail: deb,samira @iitk.ac.in Abstract Most applications of genetic algorithms (GAs) in handling constraints use a straightforward penalty function method. Such techniques involve penalty parameters which must be set right in order for GAs to work. Although many researchers use adaptive variation of penalty parameters and penalty functions, the general conclusion is that these variations are specific to a problem and cannot be generalized. In this paper, we propose a niched-penalty approach which does not require any penalty parameter. The penalty function creates a selective pressure towards the feasible region and a niching maintains diversity among feasible solutions for the genetic recombination operator to find new feasible solutions. The approach is only applicable to population-based approaches, thereby giving GAs (or other evolutionary algorithms) a niche in exploiting this penalty-parameter-less penalty approach. Simulation results on a number of constrained optimization problems suggest the efficacy of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEQUENTIAL PENALTY HANDLING TECHNIQUES FOR SIZING DESIGN OF PIN-JOINTED STRUCTURES BY OBSERVER-TEACHER-LEARNER-BASED OPTIMIZATION

Despite comprehensive literature works on developing fitness-based optimization algorithms, their performance is yet challenged by constraint handling in various engineering tasks. The present study, concerns the widely-used external penalty technique for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is employed here since previously addressed by a number ...

متن کامل

Multiobjective Genetic Based Algorithm

In this paper, a novel approach based on handling constraints as objectives together with a modified Parks & Miller elitist technique, to solve constrained multiobjective optimization problems, is analyzed with Niched Pareto Genetic Algorithm. The performance of this approach is compared with the classical procedure of handling constraints that is the exterior penalty function method. Results a...

متن کامل

Handling Constraints in Genetic Algorithms using Dominance-Based Tournaments

In this paper, we propose a constraint-handling approach for genetic algorithms which uses a dominance-based selection scheme. The proposed approach does not require the fine tuning of a penalty function and does not require extra mechanisms to maintain diversity in the population. The algorithm is validated using several test functions taken from the specialized literature on evolutionary opti...

متن کامل

An Efficient Constraint Handling Method for Genetic Algorithms

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using genetic algorithms (GAs) or classical optimization methods, penalty function methods have been the most popular approach, because of their simplicity and ease of implementation. However...

متن کامل

An ecient constraint handling method for genetic algorithms

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using genetic algorithms (GAs) or classical optimization methods, penalty function methods have been the most popular approach, because of their simplicity and ease of implementation. However...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002